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Abstract 

Phase contrast MRI can provide a comprehensive 
analysis for the hemodynamic changes in the aorta which 

is useful for the diagnosis of several aortic diseases. 
However, an initial step of accurate segmentation of the 
aorta is necessary, which is usually a time-consuming and 
subjective step. Several methods have been proposed to 
automate this step using classical segmentation methods 
and recently deep learning models. Most of the current 

models combine the magnitude and phase images equally 
across all time phases which hinder the potential 
advantage that the frames of higher velocity might have 
more useful information compared to the low velocity 
frames. In this work, we propose a novel adaptive 
combination model that combines the output probability 

maps of both the magnitude and phase models based on an 
initial velocity estimation as a surrogate for the confidence 
level in the velocity images. We applied our model on the 
2D-PC images of 215 patients and our results shows an 
accuracy of 87% for the magnitude images, 68% for the 
velocity images, 87.1% for the combined images, and 

89.1% for our proposed combination model.  

1. Introduction 

Flow imaging has potential in visualizing and 
quantifying many cardiovascular applications. [1] It also 
has a role in diagnosing of pulmonary hypertension, by its’ 
noninvasive ability to determine pressure measurements. 
[2] And could assist in complex intra-cardiac flow patterns 
which are associated with several valve diseases and heart 
failure. [1] 

2D Phase Contrast (PC) MRI is used for blood flow 
analysis and was first introduced in 1980s. In the 1990s, 4D 

flow MRI was introduced as an extension for (PC) MRI. 4D 
flow MRI consists of three dimensional orthogonal velocity 
encoding with time as the fourth dimension. 4D flow 
velocity volume is useful in blood flow quantification 
through calculating hemodynamic parameters such as 
blood pressure gradients, wall shear stress and kinetic 

energy loss. Also, 4D flow is used in turbulent flow 
analysis. [3] Three dimensional phase encoding used in 4D 

flow results in longer acquisition time for 4D flow 
compared to 2D PC MRI, in some cases a 4D flow scan 

could exceed 30 minutes. [4] 
Phase data of 2D (PC) MRI is calculated by subtracting 

two sets of images (stationary and flowing), resulting in 
residual signals formed from the motion nuclei’s which 
have different phase values between each successive 
planes. [5] Phase images are considered as a reliable 

mapping for flow velocity through slice-selective (PC) 
MRI. [6] One of the applications of (PC) MRI is analysis of 
aorta blood flow, the flow calculations depend on raw pixel 
values – that lie inside the aorta region- from both 
magnitude and phase images in addition to other 
parameters, for example, velocity encoding parameter 

VENC. [7] During acquisition, VENC value controls 
velocity encoding range. Thus, an aliasing artifact will be 
cased for an area with velocity values outside the velocity 
encoding range.  

Aorta segmentation in phase contrast MR images is a 
necessary step for accurate quantification of the flow 

dynamics. [7] However, this is usually a subjective and 
very time-consuming step. [8] Recently, automatic 
segmentation has gain popularity in the medical imaging 
field especially with the latest development of deep 
learning models. [9] Several deep learning models have 
been applied to segment the aorta from the flow images.  

[7], [10] However, most of these models combine the 
magnitude and phase equally before being fed to the 
utilized models. In this work, we propose an adaptive 
combination weight between the two images to take 
advantage from the relative quality of each of the two 
images across all the time phases. Since this quality is 

likely to depend on the flow velocity in each phase, we 
propose to use a rough velocity estimate to control the 
proposed combination weight. 

2. Methods 

2.1. Datasets 

The study was approved by the Research Ethics 
Committee, Faculty of Medicine at Cairo University. Flow 
images of 215 patients were used. The acquired images 
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were in the axial view of the aorta with the following 
parameters: FOV, 256×256, in-plane resolution, 
1.25×1.25, VENC, 150-300 (cm/s), Number of frames, 20-
30. The aorta area was manually segmented from the 

images by two expert radiologist of 5-10 years of 
experience.  Dataset was split to 120 for training, 30 for 
validation and 65 for testing. 

2.2. Preprocessing 

It is an essential step to map DICOM images to the 
correct intensity ranges using slope and intercept extracted 
from DICOM metadata. After normalization, magnitude 

images are between (0,255) and phase images (-π, π). Data 
cleaning was performed to exclude images with VENC 
artifacts from the dataset or any other artifact types. Data 
augmentation parameters were used such as random 
rotations, zooming, horizontal and vertical shifting and 
flipping, Augmentation parameters’ values were 

determined using superposition to reproduce the highest 
possible segmentation results on magnitude images, since 
untested augmentation parameters values could lead to 
affecting image field of view. 

2.3. Training 

Training each model involves first, data augmentation 
(rotation, zooming, panning, horizontal and vertical flips), 

using batch size of 16 and using Adam optimizer. We 
proposed a custom loss function for dice evaluation and 
used it to optimize the weights of the models. We trained 
each model for 500 epochs on a PC with 16GB RAM, GPU 
NVIDIA GTX 1080 Ti. 

2.4. Evaluation 

2.4.1. Dice Coefficient 

For each frame dice coefficient is calculated using the 

formula: 

𝐷𝑖𝑐𝑒 =  
2 ∗ |𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

 

( 1) 

Let X and Y be two sets, |X∩Y| indicates the number of 
intersected elements. While the denominator term 
represents the summation of elements count for each set. 
To compare patients’ segmentation performance, we will 
calculate average dice coefficient over all distinct frames 

with count (n) as following: 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑐𝑒 =  ∑0

𝑛(𝐷𝑖𝑐𝑒) ( 2) 

  

2.4.2. Flow Curve Comparison 

Segmentation is used to compute blood flow curve 

during cardiac cycle. Since 2D PC MRI is considered a 
reliable mapping for flow velocity through slice-selective 
(PC) MRI. [6] It is used in many crucial assessments such 
as regurgitation analysis. [11] 

2.5. Magnitude Model 

For segmentation, we built our own U-Net architectures 
based on the one used in. [7] This architecture has residual 

connections blocks which lead to a significant accuracy 
improvement. This model will be trained and evaluated 
only using magnitude (Anatomy model). 

2.6. Phase Model 

To further study the possible velocity effect on image 
quality and consequently on the learning process and 
segmentation accuracy. An independent segmentation 

model was built using the same architecture as magnitude 
model. This model segments the aorta using only phase 
data. Eventually, we will use this model to segment aorta 
based on flow velocity information. This velocity-driven 
segmentation will then be used to improve magnitude 
model results. 

Figure 1. Flow Diagram of the Proposed System 
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2.7. Velocity Range Estimation 

Previous systems used a magnitude – phase 
combination on input level. For example, in [10], a 
multiplication based combination was proposed. Our 
approach relies on building two pipelines (magnitude and 
phase), so no input-level combination was needed. Since 
2D PC MRI has only one velocity component 𝑉𝑧, the 
proposed system works on 2D images assuming all phase 
images during the cardiac cycle are independent, thus, we 
proposed an adaptive temporal correction system. 

Velocity range estimation is a rough estimate for the 
average blood velocity for a phase frame using magnitude 
segmentation model output. A frame at time t can have a 
velocity range between (−𝑉𝐸𝑁𝐶, 𝑉𝐸𝑁𝐶). The average 
velocity can be calculated as follows: 

𝑉 = 𝑆 ∗ 𝑃𝑡 ∗ 𝐴𝑆𝐹 ( 3) 

𝐴𝑆𝐹 =  
10 𝜋 𝑅

𝑉𝐸𝑁𝐶
 

( 4) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = (∑(𝑖=0)
𝑁  (𝑉))/(𝑁) ( 5) 

For (Eq.3) V is the velocity map resulting of multiplying 
S (ground truth mask) by Pt (the corresponding phase image 
at time t) and by a ASF (velocity scaling factor). (Eq.4) 
implies the definition of scaling factor ASF, using 
reconstruction constant R and the velocity encoding 
parameter VENC. Finally to calculate average velocity we 
use (Eq.5), which takes the average of the velocity map V 
on all flow (non-background) pixels (N).  

2.8. Probability Weighting 

Based on the previous step different phases were 
divided into five velocity groups based on each phase. The 
output masks of the magnitude and phase models are then 
combined as a weighted average to obtain the final mask 
using the following equation:  

𝑃𝑓𝑖𝑛𝑎𝑙 =
𝜔1𝑃𝑚𝑎𝑔 + 𝜔2𝑃𝑝ℎ𝑎𝑠𝑒

𝜔1 + 𝜔2
 

(6) 

 
Where 𝑃𝑓𝑖𝑛𝑎𝑙 is the inferred mask probability, 𝜔1,2 are 

the assigned weights and 𝑃𝑚𝑎𝑔,𝑃𝑝ℎ𝑎𝑠𝑒 are probability 

masks obtained from each model. Then, 𝜔1,2 are optimized 
for each velocity group. Masks were evaluated using the 
dice score to calculate the similarity with the manually 
segmented masks. Figure.1 shows a flow chart for the 
proposed workflow. 

3. Results 

Table 1 shows the average Dice score when using the 
conventional combination (Multiplication) and when 
adopting the proposed weights showing an improvement 
of 2.1% in the overall average score. 

3.1.  Velocity Effect 

Figure.2 illustrates the correlation between blood flow 
computed for every frame from ground truth masks and 

from magnitude model, we set color map to the dice 
coefficient. For magnitude model, the higher velocity of 
the frame the better dice coefficient. This emphasizes the 
velocity change effect on segmentation results and that 
using phase data to enhance magnitude model results. 

3.2.  Probability Weighting 

In order to perform an optimal combination between 

magnitude and phase probability masks, we needed to 

Table 1. Dice Evaluation on test set using Magnitude, Phase, 
Multiplication (Literature) and our Proposed Model 

Model Average Dice 

Magnitude Model 0.87 

Phase Model 0.68 

Combined(Multiplication) 0.87 

Proposed System(Inferred) 0.89 

Figure 2. Showing (Ground Truth Flow vs Magnitude Model Flow), 
emphasizes the correlation between amount of flow inside the 

anatomy images with deep learning segmentation performance 

Figure 3. 𝝎𝟐/𝝎𝟏Grid results  
. 𝝎𝟐/𝝎𝟏  
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make a grid for 𝝎𝟏𝒂𝒏𝒅 𝝎𝟐, maximum average dice value 
for the test set was at ( 𝝎𝟐/𝝎𝟏 = 𝟎. 𝟓). Figure.3 shows the 

effect of changing 𝝎𝟐/𝝎𝟏 on the final dice score on five 
different velocity intervals. 

3.3. Flow Curve Comparison 

Random samples were used from test set to validate the 
improvement of flow curves by using the proposed system. 
Figure.4 show this improvement on a specific patient 2D 
PC MRI data during the cardiac cycle. 

4. Discussion and Conclusion 

In conclusion, the dynamic nature of flow images 
controls the output images quality across the different 

phases. Thus, a fixed combination model between the 
magnitude and phase images is not expected to give the 
best possible output, through equally weighting of velocity 
at different time steps. Our results show that changing the 
combination factor across different phases can lead to 
better segmentation output (increased by ~2%). Also, Deep 

learning Ensemble enhanced the segmentation output 
(increased by ~1%). Velocity information could lead to 
improvements in magnitude based segmentation. A rough 
estimate for each frame velocity can be calculated and used 
as a surrogate for the phase image quality and thus a higher 
weight for the phase image information can be applied. 
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Figure 4. Sample of flow curve for a patient, using Ground Truth, 
Multiplication (Literature) model and proposed model 
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